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Abstract

Perturbing Liapunov function method was introduced for systems of ordinary dif-

ferential equations. In this paper, we will extend this method to systems of functional

differential equations and discuss stability and boundedness properties via the concept

of perturbing Liapunov function.
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1. Introduction

Stability properties of systems of differential equations have been interesting
important from the views of many authors (see [2,3]). Liapunov function has
played an essential rule for determining the qualitative properties of the zero
solution of the systems of differential equations. In [6], Lakshmikantham and
Leela introduced the method of perturbing Liapunov function which discussed
nonuniform properties of solutions of differential equations.

The main purpose of this paper is to extend this idea to systems of functional
differential equations

x0 ¼ f ðt; xtÞ; xt0 ¼ w; ð1:1Þ

where f 2 C½J � C0;R
n�;Rn is the Euclidean n-dimensional real space,

J ¼ ½t0;1�,
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}n ¼ C½½
r; 0�;Rn�; C0 ¼ f/ 2 }n: k/k0 < qg
and k/k0 ¼ max


r6 sP 0
k/ðsÞk;

C½J � C0;R
n� denotes the space of continuous mapping J � C0 into Rn. For

xtðsÞ ¼ xðt þ sÞ; 
r6 s6 0 and xtðt0;wÞ being a solution of (1.1) with initial
values xt0 ¼ w. Define

s0ðqÞ ¼ fxt 2 C0: kxtk < qg:

Following [5], we define for a Liapunov functional V ðt; xtÞ 2 C½J � C0;R
n� is

Lipschitzian in xt, the functional

DþV ðt; xtÞ ¼ lim
h!0þ

sup
1

h
½V ðt þ h; xtþhÞ 
 V ðt; xtÞ�:

The first work dedicated to this method was done by Lakshmikantham and
Leela [6].

The following definitions will be needed in the sequel.

Definition 1 [4]. A function bðrÞ is said to belong the class @ if b 2
C½½0; qÞ;Rþ�, bð0Þ ¼ 0; bðrÞ ! 0; as r ! 0, and bðrÞ is strictly monotone in-
creasing in r.

Definition 2 [5]. A solution xtðt0;wÞ of (1.1) is said to be equibounded if there
exist a positive constant Mðt0; dÞ > 0 and d > 0 such that for

kwk6 d ) kxtðt0;wÞk6Mðt0; dÞ:

Definition 3 [5]. The zero solution of (1.1) is said to be equistable if for
� > 0; t0 2 J there exists a positive function dðt0; �Þ > 0 that is continuous in t0
such that

kxtðt0;wÞk < �; tP t0:

provided that kwk0 < d.
In the case of being uniformly stable d is independent of t0.

2. Equiboundedness

In this section, we discuss the boundedness of the systems (1.1) via per-
turbing Liapunov functional.

Theorem 1. Let E � C0 be compact subset. Suppose that there exist two func-
tionals V1ðt; xtÞ 2 C½J � E

c
;Rþ�, and there exist two functions V2ðt; xtÞ 2 C½J �
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sc0ðqÞ;R
þ�; g1 2 C½Rþ � Rþ;R�; and g2 2 C½Rþ � Rþ;R� with V1ðt; 0Þ ¼ V2ðt;

0Þ ¼ g1ðt; 0Þ ¼ g2ðt; 0Þ ¼ 0 such that

(H1) V1ðt; xtÞ is Lipschitzian in xt and

DþV1ðt; xtÞ6 g1ðt; V1ðt; xtÞÞ; ðt; xtÞ 2 J � E
c
: ð2:1Þ

(H2) V2ðt; xtÞ is Lipschitzian with respect to xt and

bkxtk6 V2ðt; xtÞ6 akxtk; ð2:2Þ

where a; b 2 @; ðt; xtÞ 2 ðJ � sc0Þ.

(H3) For each ðt; xtÞ 2 J � sc0,

DþV1ðt; xtÞ þ DþV2ðt; xtÞ6 g2ðt; V1ðt; xtÞ þ V2ðt; xtÞÞ: ð2:3Þ

(H4) If the zero solution of the scalar differential equation

u0 ¼ g1ðt; uÞ; uðt; uÞ ¼ u0; ð2:4Þ

is equibounded, and if the zero solution of the scalar differential equation

w0 ¼ g2ðt;wÞ; wðt0Þ ¼ w0; ð2:5Þ

is uniformly bounded.
Then the zero solution of (1.1) is equibounded.

Proof. Since E is compact subset of C0, there exists q > 0 such that s0ðqÞ �
s0ðE; q0Þ for some q0 > 0, where

s0ðE; q0Þ ¼ fxt 2 C0: dðxt;EÞ < q0g;

where

dðxt;EÞ ¼ inf
yt2E

kxt 
 ytk:

Let t 2 Rþ; a6 q be given. Assume that a1 ¼ a1ðt0; aÞ ¼ maxða0; a�Þ, where

a0 ¼ max½V1ðt0;wÞ: w 2 s0ðaÞ \ Ec�

and a� P V1ðt; xtÞ for ðt; xtÞ 2 J � oE.
Since the zero solution of (2.4) is equibounded, given a1 > 0 and t0 2 Rþ,

there exists b0 ¼ b0ðt; a1Þ such that

uðt; t0; u0Þ < b0; tP t0; ð2:6Þ

whenever u0 < a1, where uðt; t0; u0Þ is any solution of (2.4).
Also, since the zero solution of (2.5) is uniformly bounded, given a2 > 0;

t0 2 Rþ, there exists b1ða2Þ > 0 such that

wðt; t0; u0Þ < b1ða1Þ; tP t0; ð2:7Þ
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provided that w0 < a2, where wðt; t0;w0Þ is any solution of (2.5).
Now, we choose u0 ¼ V1ðt0;wÞ, and a2 ¼ aðaÞ þ b0, as bðuÞ ! 1 with u !

1. We can choose b ¼ bðt0; aÞ such that

bðbÞ > b1ða2Þ: ð2:8Þ

Now, let w 2 s0ðaÞ imply that any solution xtðt;wÞ satisfies xtðt;wÞ 2 s0ðbÞ for
tP t0. Suppose that this is not true, there exists a solution xtðt0;wÞ of (1.1) with
w 2 s0ðaÞ such that for t� > t0,

xt� ðt0;wÞ ¼ b:

Since s0ðE; qÞ � s0ðaÞ, there are two possibilities to consider
(I) xtðt0;wÞ 2 Ec for t 2 ½t0; t��;
(II) there exists t2 P t0 such that

xtðt0;wÞ 2 oE; xtðt0;wÞ 2 Ec for t 2 ½t0; t��:

If case (I) is true, then we can find t1 > t0 such that

xt1ðt0;wÞ ¼ a; xt� ðt0;wÞ ¼ b; and xtðt0;wÞ 2 s�0ðaÞ; t 2 ½t0; t�� ð2:9Þ

setting

mðtÞ ¼ V1ðt; xtðt0;wÞÞ þ V2ðt; xtðt0;wÞÞ; t 2 ½t1; t��:

It is easy to obtain, from (2.3), thus from [1,5],

DþmðtÞ6 g2ðt;mðtÞÞ; t 2 ½t1; t��:

Consequently, by comparison [4, Theorem 1.4.1], we get

mðtÞ6 r2ðt; t1;mðtÞÞ; t 2 ½t1; t��;

where r2ðt; t1;w0Þ is the maximal solution of (2.5) such that r2ðt1; t1;w0Þ ¼ w0.
Thus

V1ðt�; xt� ; ðt0;wÞÞ þ V2ðt�; xt� ðt0;wÞÞ
6 r2ðt�; t1; V1ðt1; xt1ðt0;wÞÞ þ V2ðt1; xt1ðt0;wÞÞÞ: ð2:10Þ

Similarly, from (2.1) we have

V1ðt1; xt1ðt0;wÞÞ6 r1ðt1; t0; V1ðt0;wÞÞ; ð2:11Þ

where r1ðt1; t0; u0Þ is the maximal solution of (2.4).
From the fact that u0 ¼ V1ðt0;w1Þ < a1, and (2.6) yield

r1ðt1; t0; V1ðt0;wÞÞ6 b0: ð2:12Þ

Furthermore,

V2ðt1; xt1ðt0;wÞÞ6 aðaÞ; ð2:13Þ
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from (2.12) and (2.13), we have

w0 ¼ V1ðt1; xt1ðt0;wÞÞ þ V2ðt1; xt1ðt0;wÞÞ < b0 þ aðaÞ ¼ a2: ð2:14Þ

Hence, from (2.2), (2.7)–(2.10), (2.14), and the fact that V1 P 0,

bðbÞ6 b1ða2Þ6 bðbÞ: ð2:15Þ

If the case (II) holds, we again arrive at the inequality (2.10), where t1 > t
satisfies (2.9). Now, we have in place of (2.11) the inequality

V1ðt1; xt1ðt0;wÞÞ6 r1ðt1; t2; V1ðt2; xt2ðt0;wÞÞÞ:

Since xt2ðt0;wÞ 2 oE and V1ðt2; xt2ðt0;wÞÞ6 a�
6 a1. Thus, we get the same con-

tradiction in (2.15). This proves that

kxtðt0;wÞk < b for tP t0;

whenever kwk < a; a P q. For a < q, we set bðt0; aÞ ¼ bðt0; qÞ, and the proof is
completed. �

3. Equistability

In this section, we discuss the concept of perturbing Liapunov functional for
stability property of the system of functional differential equations (1.1).

Theorem 2. Suppose that there exist two functionals g1 and g2 which are defined
as in Theorem 1, and let there exist two functions V1ðt; xtÞ 2 C½J � s0ðqÞ;Rþ�;
V2ðt;xtÞ 2 C½J � s0ðqÞ \ sc0ðgÞ;R

þ�, with V1ðt;0Þ ¼ V2ðt;0Þ ¼ g1ðt;0Þ ¼ g2ðt;0Þ ¼ 0
such that

(H5) V1ðt; xtÞ is Lipschitzian in xt and

DþV1ðt; xtÞ6 g1ðt; V1ðt; xtÞÞ; ðt; xtÞ 2 J � s0ðqÞ: ð3:1Þ

(H6) V2ðt; xtÞ is Lipschitzian in xt and

bkxtk6 V2ðt; xtÞ6 akxtk; ð3:2Þ

where a; b 2 @; ðt; xtÞ 2 ðJ � S0ðqÞ \ sc0ðgÞÞ.

(H7) For each ðt; xtÞ 2 ðJ � s0ðqÞ [ sc0ðgÞÞ,

DþV1ðt; xtÞ þ DþV2ðt; xtÞ6 g2ðt; V1ðt; xtÞ þ V2ðt; xtÞÞ:

(H8) If the zero solution of the scalar differential equation (2.4) is equistability,
and if the zero solution of the scalar differential equation (2.5) is uniformly
stability.
Then the zero solution of (1.1) is equistable.
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Proof. From our assumption, the zero solution of (2.5) is uniformly stable. Let
0 < � < q and t0 2 R. Given bð�Þ > 0 and t0 2 Rþ, there exists d0 ¼ d0ð�Þ > 0
such that

wðt; t0;w0Þ < bð�Þ; tP t0; ð3:3Þ

provided that w0 < d, where wðt; t0;w0Þ is any solution of (2.5).
From the condition (H6), there exists d2 ¼ d2ð�Þ > 0 such that

aðd0Þ <
d
2
: ð3:4Þ

From our assumption, the zero solution of (2.4) is equistable, given d=2, and
t0 2 Rþ, there exists d� ¼ d�ðt0; �Þ > 0 such that

uðt; t0; u0Þ <
d
2
; tP t0; ð3:5Þ

provided that u0 < d�; uðt; t0; u0Þ being any solution of (2.4).
Following [6], choose u0 ¼ V1ðt0; u0Þ, since V1ðt; xtÞ is continuous and

V1ðt; 0Þ ¼ 0, there exists d1 > 0 such that

kwk < d ) kxtðt0;wÞk < �; tP t0: ð3:6Þ

Suppose that this is not true, there exist t1; t2 > t0 such that for kwk < d,

kxt1ðt0;wÞk ¼ �;

kxt2ðt0;wÞk ¼ d;

xtðt0;wÞ 2 s0ð�Þ \ sc0ðd0Þ; t 2 ½t1; t2�:
ð3:7Þ

Let d2 ¼ g, so that the condition (H6) is assured. Setting

mðtÞ ¼ V1ðt; xtðt0;wÞÞ þ V2:gðt; xtðt0;wÞÞ; t 2 ½t1; t0�:

we get

DþmðtÞ6 g2ðt;mðtÞÞ; t 2 ½t1; t2�;

which yields

V1ðt2; xt2ðt0;wÞÞ þ V2:gðt2; xt2ðt0;wÞÞ6 r2ðt2; t1; V1ðt1; xt1ðt0;wÞÞ
þ V2:gðt1; xt1ðt0;wÞÞÞ;

where r2ðt1; t1;w0Þ ¼ w0; r2ðt1; t1;w0Þ is the maximal solution of (2.5).
Also, we have

V1ðt1; xt1ðt0;wÞÞ6 r1ðt1; t0; V1ðt0;wÞÞ;

where r1ðt1; t0; u0Þ is the maximal solution of (2.4).
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By (3.5) and (3.6) we have

V1ðt1; xt1ðt0;wÞÞ6
d
2
: ð3:8Þ

From (3.4) and (3.7) we get

V2:gðt1; xt1ðt0;wÞÞ <
d
2
: ð3:9Þ

Thus (3.3), (3.7)–(3.9), and (H6) yield the following contradiction:

bð�Þ ¼ bkxt1ðt0;wÞk
6 V2:gðt1; xt1ðt0;wÞÞ
6 akxt2ðt0;wÞk
¼ aðdÞ6 bð�Þ:

Thus, the zero solution of (1.1) is equistable, and the proof is completed. �
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