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Abstract

Perturbing Liapunov function method was introduced for systems of ordinary dif-
ferential equations. In this paper, we will extend this method to systems of functional
differential equations and discuss stability and boundedness properties via the concept
of perturbing Liapunov function.
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1. Introduction

Stability properties of systems of differential equations have been interesting
important from the views of many authors (see [2,3]). Liapunov function has
played an essential rule for determining the qualitative properties of the zero
solution of the systems of differential equations. In [6], Lakshmikantham and
Leela introduced the method of perturbing Liapunov function which discussed
nonuniform properties of solutions of differential equations.

The main purpose of this paper is to extend this idea to systems of functional
differential equations

X =f(t,x), x,=1, (1.1)

where f € ClJ x Cy,R"],R" is the Euclidean n-dimensional real space,
J = [lo, OO],
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o' = C[[=r, 0, R"], Co={d e p"|dlly<p}
and [|¢llo = max [I$(s)l,
C|J x Cy, R"] denotes the space of continuous mapping J x C, into R". For

x(s) =x(t+s), —r<s<0 and x,(t,y) being a solution of (1.1) with initial
values x,, = . Define

s0(p) = {x, € Gt Il < p}.
Following [5], we define for a Liapunov functional V' (¢,x,) € C[J x Cy, R"] is
Lipschitzian in x;, the functional

. 1
D"V(t,x,) = hhr(r)1+ sup, V(¢4 hyxin) — V(%))

The first work dedicated to this method was done by Lakshmikantham and
Leela [6].
The following definitions will be needed in the sequel.

Definition 1 [4]. A function b(r) is said to belong the class N if b€
Cl[0, p), R*], 5(0) =0, b(r) — 0, as » — 0, and b(r) is strictly monotone in-
creasing in r.

Definition 2 [5]. A solution x,(, ) of (1.1) is said to be equibounded if there
exist a positive constant M (,0) > 0 and é > 0 such that for
Wl <6 = Ix(to, )| < M1, 0).

Definition 3 [5]. The zero solution of (1.1) is said to be equistable if for
€ > 0,1 € J there exists a positive function J(¢y, €) > 0 that is continuous in £,
such that

llx, (6o, W)I| <€, t=t0.

provided that ||y||, < J.
In the case of being uniformly stable ¢ is independent of #.

2. Equiboundedness

In this section, we discuss the boundedness of the systems (1.1) via per-
turbing Liapunov functional.

Theorem 1. Let E C Cy be compact subset. Suppose that there exist two func-
tionals Vi(t,x,) € ClJ x E*,R"|, and there exist two functions V;(t,x,) € C[J x
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s6(p), RT), @1 € CIRT x KT, N|, and g» € C(RT x KT R with V1(¢,0) = (¢,
0) = g1(2,0) = g2(¢,0) = 0 such that
(H1) " (t,x,) is Lipschitzian in x, and

D'Vi(t,x) <gi(t, i(t,x)), (t,x)€J xE". (2.1)
(H2) 3(¢,x,) is Lipschitzian with respect to x, and
bl < Va(t, x) <allxill, (2.2)
where a,b € X, (t,x,) € (J X s§).
(H3) For each (t,x,) € J X s,
D' Wi(t,x,) + D Wa(t,x) < ga(t, Vi(t,x) + Va(t,x.). (2.3)

(H4) If the zero solution of the scalar differential equation
u =g (t,u), u(t,u)=u, (2.4)
is equibounded, and if the zero solution of the scalar differential equation
W =g(t,w), w(t) = wo, (2.5)
is uniformly bounded.
Then the zero solution of (1.1) is equibounded.
Proof. Since E is compact subset of Cy, there exists p > 0 such that so(p) D
so(E, p,y) for some p, > 0, where
so(E, po) = {x: € Co: d(x,E) < po},
where

d(x,E) = inf [lx, = |

Let t € R, o< p be given. Assume that o = o (#y, ) = max (o, «*), where
o9 = max[Vi(to, ): ¥ € so(a) N E]

and a* = Vi(¢,x,) for (¢t,x,) € J x OE.
Since the zero solution of (2.4) is equibounded, given a; > 0 and #, € R™,
there exists ff, = f,(¢,01) such that
u(t,to,up) < Py, t=ty, (2.6)

whenever uy < oy, where u(¢, ty, up) is any solution of (2.4).
Also, since the zero solution of (2.5) is uniformly bounded, given a, > 0,
to € R*, there exists B, (cz) > 0 such that

W(ta to,”o) < ﬁl((xl)7 t= to, (27)



322 A.A. Soliman | Appl. Math. Comput. 133 (2002) 319-325

provided that wy < oy, where w(t, #y, wp) is any solution of (2.5).
Now, we choose uy = Vi (t, ), and o, = a(a) + f,, as b(u) — oo with u —
oo. We can choose ff = (¢, ) such that

b(B) > i (22). (2.8)

Now, let € so(o) imply that any solution x,(¢, V) satisfies x,(¢,¥) € so(p) for
¢t = ty. Suppose that this is not true, there exists a solution x,(#y, ) of (1.1) with
W € so(ar) such that for #* > 1,

Xy (th '//) = ﬁ

Since s0(E, p) C so(a), there are two possibilities to consider
(M) x,(to,¥) € E° for t € [ty, *];
(II) there exists #, > #, such that

x:(to, ) € OE, x,(ty, ) € E¢ for ¢t € [ty,1"].
If case (I) is true, then we can find # > fy such that
X, (o, ) = o, xp(t0,¥) = B, and x,(to, ) € sy(2), € [to,1"] (2.9)
setting
m(t) = Vi(t,x(to, ) + Va(t,x:(t0,¥)), 2 € [0, 77].
It is easy to obtain, from (2.3), thus from [1,5],
D'm(t) < g (t,m(t)), ten,r].
Consequently, by comparison [4, Theorem 1.4.1], we get
m(t) <r(t,t1,m(t)), te€t,t],

where r,(t, £, wy) is the maximal solution of (2.5) such that ry (¢, ¢, wy) = wy.
Thus

Nt X, (t0, W) + VAt xp (t0, W)

< }’2(2‘*, tl; Vl(tlvxtl (t07 l//)) + VZ(tlaxtl (t(), l//))) (210)
Similarly, from (2.1) we have
Vit xq, (to,¥)) < ri(ty, to, Vi(to, ), (2.11)

where r(#1, ty, up) is the maximal solution of (2.4).
From the fact that uy = Vi (%, ¥,) < o, and (2.6) yield

ri(ty, to, Vi(to, ) < Bo. (2.12)

Furthermore,

Va(ty,xi, (1o, ) < a(a), (2.13)
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from (2.12) and (2.13), we have

wo = Vi(tr,x, (to, ) + Valtr, i, (to, ) < By + a(e) = . (2.14)
Hence, from (2.2), (2.7)—(2.10), (2.14), and the fact that 7] > 0,
b(B) < Pi(22) <b(P). (2.15)

If the case (II) holds, we again arrive at the inequality (2.10), where #, > ¢
satisfies (2.9). Now, we have in place of (2.11) the inequality

Vit xq, (to,¥)) < ri(t, 6o, Vita, x4, (t0, W)

Since x,, (to, ) € OE and Vi(t2,x,(to, ¥)) < o <. Thus, we get the same con-
tradiction in (2.15). This proves that

llx:(to, )| < B for t = 1,

whenever ||| < a, o = p. For o < p, we set f(t,«) = (¢, p), and the proof is
completed. [

3. Equistability

In this section, we discuss the concept of perturbing Liapunov functional for
stability property of the system of functional differential equations (1.1).

Theorem 2. Suppose that there exist two functionals g, and g, which are defined
as in Theorem 1, and let there exist two functions Vi(t,x,) € C[J x so(p), R'],
Va(t,x,) € CIJ x so(p) Ns(17), R, with Vi(2,0) = V5(2,0) = g1(1,0) = g2(¢,0) =0
such that

(H5) Vi(¢,x,) is Lipschitzian in x, and
D" V(t,x) <gi(t, i(t,x,)), (t,x,) €J X s0(p). (3.1)
(HO6) ¥ (t,x,) is Lipschitzian in x, and
bllx || < Va(t,x) <allxll, (3.2)
where a,b € X, (t,x,) € (J x So(p) Ns§(n)).
(H7) For each (t,x,) € (J x so(p) Us§(n)),
D' i(t,x,) + D Wa(t,x) < ga(t, Vi(t,x) + Va(t,x,).

(HS8) If the zero solution of the scalar differential equation (2.4) is equistability,
and if the zero solution of the scalar differential equation (2.5) is uniformly
stability.

Then the zero solution of (1.1) is equistable.
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Proof. From our assumption, the zero solution of (2.5) is uniformly stable. Let
0 <e< pandt € R. Given b(e) > 0 and 1, € R*, there exists 5y = do(e) > 0
such that

w(t, to,wo) < b(e), t =1, (3.3)

provided that wy < J, where w(z, £y, wy) is any solution of (2.5).
From the condition (H6), there exists d, = d,(€) > 0 such that

a(3y) < g (3.4)

From our assumption, the zero solution of (2.4) is equistable, given /2, and
to € M*, there exists §* = 6"(t, €) > 0 such that

u(t, to, up) < t =y, (3.5)

5 )
provided that uy < 6%, u(t,#,u) being any solution of (2.4).

Following [6], choose uy = Vi(t,uo), since V(¢,x,) is continuous and
Vi(¢,0) = 0, there exists 0; > 0 such that

Wl <0 = llx(io, )l <€ t=to. (3.6)

Suppose that this is not true, there exist #,,# > #, such that for ||| < J,

[lx,, (20, )| = €,
[[xi, (20, W) || = 0, (3.7)

x:(to, W) € so(€) NsG(09), t € [t,ta).
Let 6, = 5, so that the condition (H6) is assured. Setting
m(t) = N(t,x(to, ) + Vay(t,x:(00, %)), 1 € [0, 00]-
we get
D m(t) < g(t,m(t), te [, bl
which yields

Vita, x4, (t0, W) + Vay(t2, x4, (t0, ) S ra(ta, t1, Vi(t1, x4, (0, 1))
+ VZ.;](tlrxtl (IOa lp)))a

where ry(t1, ¢, wo) = wo, ra(t1, 4, wo) is the maximal solution of (2.5).
Also, we have

Vl(tlrxtl <t07 lp)) grl (t17t07 I/l(t()v lp))?

where r(#1, %y, up) is the maximal solution of (2.4).
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By (3.5) and (3.6) we have
19

Vl(thxtl (tovlp))g 5 (38)
From (3.4) and (3.7) we get
Faaltx, (10,0)) < 3. (3.9)

Thus (3.3), (3.7)-(3.9), and (H6) yield the following contradiction:

b(E) = b”xtl (th lﬂ)“
<Vay(t,x, (20, 4))
< allxi, (to, )|
= a(0) < b(e).

Thus, the zero solution of (1.1) is equistable, and the proof is completed. [J
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